Жучихин Виктор Иванович «Первая атомная»

 
 


Ссылка на полный текст: Жучихин В. И. Первая атомная. — 1993 | Электронная библиотека | История Росатома
Навигация:
Игорь Васильевич Курчатов
Работа над урановой бомбой в СКБ-47
Определение параметров американской атомной бомбы по фотографии носителя
Условия для ИТР и рабочих на объекте Арзамас-16
1947 год: начало работ, основные задачи
Подбор взрывчатки и создание фокусирующих элементов
Самоубийство Стельмаховича
Методы измерения скорости детонации
Отработка сферического заряда
Капсюль-детонатор
Отработка технологии сборки заряда с алюминиевым керном
Начальник отдела газодинамических исследований на натурном заряде Кирилл Иванович Щёлкин
Отработка шарового заряда, обеспечивающего идеально сферический фронт ударной волны в металлическом керне
Итоги 1948 года
Требования Павла Михайловича Зернова к организации работ
Срыв сроков изготовления заказов для первой атомной бомбы
Многократная отработка блока инициирования
Подготовка к испытаниям РДС-1
Система управления подрывом заряда и управления аппаратурным комплексом, регистрирующим параметры ядерного взрыва
Подготовка системы подрыва заряда
Щёлкин — крестный отец РДС-1
После испытаний
Разработкой приборов ступеней предохранения
Отработка автоматики подрыва

Игорь Васильевич Курчатов

За длинную красивую бороду Игоря Васильевича за глаза все без исключения величали не иначе, как «Бородой», а начальник ПГУ Б.Л.Ванников, неистощимый источник острот и анекдотов по любому поводу, неизменно называл Игоря Васильевича «Козлом», причем эта, казалось бы оскорбительная кличка, встречалась всеми, в том числе и самим Бородой, веселым хохотом.

Встречи с Игорем Васильевичем происходили не только в лабораториях, но и на площадках во время проведения взрывных экспериментов. Правда, в таких случаях сверхбдительная стража, опережая всех, приказывала к приезду Курчатова припрятывать взрывчатку куда-нибудь подальше, что, конечно, не проходило им незамеченным. Однажды произошел весьма курьезный случай, положивший конец этим действиям. Будучи очень наблюдательным, при очередном посещении площадки Игорь Васильевич вдруг спросил одну из сотрудниц лаборатории Альтшулера Милицу Ивановну Бражник:
— Скажи, голубушка, а где у вас заряды, с которыми вы производите эксперименты, что-то я их ни разу не видел?
— А мы их прячем в лес к Вашему приезду: таково распоряжение начальства.
Разразился гомерический хохот всех присутствующих, велено было немедля вынести из леса все заряды и установить на поле, где им положено быть.

Работа над урановой бомбой в СКБ-47

Конструкцию первой атомной бомбы следует считать плодом коллективного разума и труда коллектива, одним из руководителей которого был Юлий Борисович. Как к тому времени стало понятно, для осуществления ядерного взрыва необходимо обеспечить цепные реакции деления ядер плутония или урана-235 путем перевода этих материалов в надкритическое состояние. Это можно осуществить либо путем сближения двух подкритических масс, либо через значительное уплотнение первоначально подкритической массы с помощью сжатия.
Урановая бомба на принципе сближения, согласно постановлению Совета Министров, разрабатывалась в СКБ-47 (главный конструктор — Кулаков) в период 1946–1949 годов. Однако из-за отсутствия в этой организации необходимой производственной и научной базы для экспериментальных исследований, специалистов по ядерной физике и газовой динамике, а также специального приборного оснащения, разработки не удалось довести до конца. Впрочем, сжатие плутония, на которое были ориентированы разработки КБ-11, сулило более обнадеживающие результаты.

Определение параметров американской атомной бомбы по фотографии носителя

Вначале мы не располагали значением критической массы плутония. Поэтому газодинамики еще не представляли толком, какую массу его нужно взять и до какой степени сжать, чтобы обеспечить эффективный переход ее через критсостояние. А это было необходимо для выбора конструкции и определения размеров первых исследовательских образцов обжимающего заряда. Для начала газодинамических работ до выяснения критмассы плутония пошли следующим путем.
Опубликованный в одном из американских журналов снимок подвески под самолет В-29 ("летающая крепость") атомной бомбы, сброшенной над Хиросимой, позволил оценить ее габариты. Ведь размеры бомболюка нам известны — копией В-29 являлся наш самолет ТУ-4. Если исходить из них, то наружный диаметр авиабомбы не должен превышать 1500 мм, а длина — 3325 мм. Вычитая из этих величин толщины баллистического корпуса авиабомбы и корпуса сферического заряда, обеспечивающие необходимую прочность конструкции, получаем отправной габарит сферического заряда ВВ. Из него следуют размеры всех элементов заряда ВВ.
Из имевшейся в нашем распоряжении схемы американского заряда, добытой, надо полагать, разведывательными службами (в ней не было ни одного размера), следовало, что сферически сходящаяся детонационная волна в заряде ВВ формируется синхронно работающими специальными фокусирующими элементами, каждый из которых инициируется быстродействующим капсюлем-детонатором (КД). Сколько таких элементов приходится на сферу, из схемы установить не удалось. Для наилучшего приближения к сферической симметрии и упрощения решений при конструировании фокусирующих элементов желательно, чтобы соседние центры инициирования этих элементов на поверхности сферы размещались на одинаковом расстоянии друг от друга. За основу устройства фокусирующего пояса сферического заряда был взят почти правильный 32-гранник, вписываемый в сферу (сейчас по такой схеме делают лучшие футбольные мячи). Автором разработки являлся Владимир Федорович Гречишников. Фокусирующий элемент преобразует расходящийся фронт детонации, инициируемой КД в одной точке, в сходящийся фронт, одновременно приходящий на всю внутреннюю поверхность элемента, плотно прилегающую к сферическому заряду. Конструкция сферического заряда ВВ вместе с поясом фокусирующих элементов выбиралась на основе результатов экспериментальных исследований формы детонационного фронта, так чтобы обеспечить почти идеальную его сферичность.
Первоначально размеры элементов центральной части заряда — обжимаемых деталей из плутония — выбирались не путем поиска оптимальных значений, а скорее с помощью интуитивных решений. И только впоследствии размеры были уточнены. Разработка принципиального устройства фокусирующих элементов и выбор ВВ для них, экспериментальная проверка работы конкретного элемента явились предметами деятельности соответствующих научно-исследовательских, конструкторских и технологических коллективов на протяжении двух с небольшим лет.

Условия для ИТР и рабочих на объекте Арзамас-16

Некоторые досужие историки в своих повествованиях со слов неких свидетелей событий тех дней утверждают, что такое материальное обеспечение было создано только для ИТР, а рабочие жили в неимоверно плохих условиях и впроголодь, а кое-кто якобы даже падал в обморок от голода на рабочем месте у станка. Все это — полный и недобросовестный вымысел. В 1947 году рабочих было чуть больше, чем ИТР. Я был очень близко знаком почти со всеми рабочими опытного производства, транспортного цеха, снабженческих служб и т. д., постоянно встречался с ними в цехах и на складах, где выполнялись наши заказы на оснастку, экспериментальные узлы, изделия внешней поставки и транспортировку. Со многими из них был в близких товарищеских отношениях и очень хорошо знал уровень жизни их семей. Жилищные условия рабочих ничем не отличались от условий ИТР. По карточкам и дополнительным «литерам» рабочие и ИТР покупали продукты одного ассортимента, в одном и том же магазине и по одинаковым ценам. На равных правах они обеспечивались мебелью, домашней утварью и промтоварами.
Единственное, что нас разделяло, — это столовая. ИТР питались в административном здании, рабочие — в бывшем монастырском храме, переоборудованном под столовую. Обслуживались рабочие так же без карточек по специальным талонам и по тем же ценам. Многие высококвалифицированные рабочие имели оклады в 2–3 раза больше, чем ИТР. Была небольшая группа уникальных слесарей-инструментальщиков, которым были установлены персональные оклады — 3500 рублей. (Напомню — оклад инженера 1300 рублей). С отменой карточной системы 15 декабря 1947 года закончилась и дискриминация со столовой и разными «литерами» на приобретение продуктов питания: ешь и пей в любом общепитовском заведении и покупай в любом магазине все, что там есть в ассортименте и столько, сколько хочешь, если позволяет бюджет.

Спецпривилегий для избранных и отпуска продуктов с заднего крыльца в то время и в помине не было. Привилегированным местом оставался лишь так называемый генеральный коттедж — гостиница и столовая — для командированных на объект представителей высшего руководства отрасли.

1947 год: начало работ, основные задачи

Что касается отдела натурных испытаний, в котором я пока являлся единственным сотрудником, то ему предстояло комплектование оборудованием, с помощью которого в дальнейшем будут изготавливаться детали модельного заряда, отрабатываться методики определения сферичности детонационных и ударных волн, сначала на моделях, затем на натуре, методики регистрации скоростей сходящихся детонационных и ударных волн. Значит, кроме технологического оборудования, следовало обзаводиться соответствующей регистрирующей аппаратурой, которой в наличии еще не было. И приобрести ее было негде. Нужно было либо самим ее разработать и изготовить, либо найти смежника, который смог бы это сделать по нашим техническим требованиям. Что касается осциллографической аппаратуры, то, к моей радости, она уже была заказана (по-видимому, по инициативе К.И.Щёлкина) и разрабатывалась в институте Химической физики АН СССР, куда мне предстояло не один раз съездить.
Поскольку намечалось проведение измерений скоростей сходящихся детонационных и ударных волн, то нужно было продумать и спроектировать экспериментальные блоки. Так как в то время для таких работ специальных конструкторов не было, то мне предстояло заняться этим самому. Для отработки методики измерений необходимо было провести множество мелких взрывных экспериментов. В то время для этого нужно было делать своими руками и заряды, и металлические узлы; специальный завод еще только строился. Значит, требовалось оборудовать лабораторию соответствующим станочным парком и инструментом. Кроме того, отделу вскоре предстояло заняться определением высоты взрыва атомной бомбы, обеспечивающей максимальную площадь поражения наземных сооружений ударной волной. Результаты этих исследований нужны были не только для военного применения, но и для воздушных испытаний на полигоне.
Решение задачи предполагалось найти с помощью модельных экспериментов, в ходе которых будут проводиться взрывы зарядов ВВ весом 10–20 кг, и требовалось разработать программу их проведения. Для приобретения практических навыков по обработке взрывчатых веществ, составлению смесей, изготовлению из них деталей, по проведению взрывных работ с регистрацией параметров взрыва, меня на 3–4 месяца включили в группу А.Д.Захаренкова, с которым я к тому времени познакомился довольно близко ...

Подбор взрывчатки и создание фокусирующих элементов

Принципиальная схема атомной бомбы, примерные размеры ее элементов были к тому времени уже вчерне определены, и конструкторы вели более подробную проработку всех ее узлов и деталей. Основной, совершенно новой для всех составной частью был сферический заряд, инициируемый одновременно в 32 точках по наружной поверхности. Верхний слой сферического заряда состоял из "фокусирующих элементов", преобразующих 32 расходящиеся детонационные волны в одну сферически сходящуюся. Сферический заряд состоял также из 32 элементов. Внутрь сферического заряда ВВ вставлялся алюминиевый шар с плутониевым зарядом в центре. Работа фокусирующего элемента основана на разнице скоростей детонации его составных частей. Устройство элемента обеспечивает одинаковое время прохождения детонации от точки инициирования до любой точки его внутренней поверхности, несмотря на разные пути. Чем больше разница скоростей детонации частей элемента, тем он получается компактнее.
В качестве ВВ одной из частей фокусирующего элемента выбрали сплав тротила с гексогеном в соотношении 1:1, называемый ТГ 50/50, скорость детонации которого составляет примерно 7650 м/с. В качестве ВВ другой части выбрали смесь бариевой селитры, тротила и нафталина. Следует подробнее объяснить такой выбор. Из известных ВВ самой малой скоростью детонации обладает бариевая селитра, однако при том ее количестве, которое идет на линзу, детонация затухает. Для придания устойчивости детонации к селитре подмешивают тротил, но чтобы из-за этого скорость детонации не возросла, в смесь добавляют также нафталин. Скорость детонации такой смеси составляет примерно 5200 м/с.
Первая задача в создании фокусирующих элементов заключалась в том, чтобы подобрать оптимальное соотношение в смеси тротила, бариевой селитры и нафталина, обеспечивая при этом и устойчивость детонации, и минимальную ее скорость.
Вторая задача — выбрать технологию изготовления деталей из этой смеси для проведения опытов, затем, в зависимости от стабильности плотности получаемых деталей и стабильности скорости детонации, рекомендовать технологию производства.
Третья задача — рассчитать и по экспериментальным данным скорректировать устройство фокусирующего элемента, обеспечивающее одновременность выхода детонационной волны на всю поверхность дна элемента.
Четвертая задача — обеспечить синхронную работу всех элементов в совокупности для получения сферически симметричной детонационной волны по всей поверхности заряда ВВ. В задачу исследования баротоловой смеси, входящей в состав фокусирующих элементов, при различных соотношениях ее компонентов, входило определение оптимальной технологии изготовления деталей и оптимального соотношения компонентов, обеспечивающее устойчивую детонацию.
Для определения величины скорости детонации изготавливались цилиндры диаметром 30–40 мм и высотой 100–120 мм. Часть из них изготавливалась непосредственно в лаборатории, часть в НИИ-6 (Москва), куда баротоловая смесь доставлялась самолетом. Отстрел цилиндрических зарядов производился на площадке № 2, возле каземата, сданного в эксплуатацию строителями в июне 1947 года после соответствующего испытания на прочность взрывом заряда повышенной мощности. Площадка № 2 находилась в лесу на расстоянии 5 км от территории завода, на которой располагался наш лабораторный корпус.

Основной задачей было исследование ударной сжимаемости различных материалов при давлении от сотен тысяч до нескольких миллионов атмосфер. Одновременно предстояло определить также величину давления на фронте детонационной волны в плоском и сферическом случаях, а для этого нужно было разработать методику экспериментального определения скорости продуктов взрыва (ПВ) за фронтом детонационной волны. Уместно отметить, что изучением взрывчатых веществ и явлениями взрыва занимаются с давних времен, однако значения величин давлений на фронте детонационной волны или скорости движения продуктов взрыва за фронтом детонационной волны к началу наших исследований никому еще (кроме, может быть, создателей американской атомной бомбы) не удавалось измерить. Решению данной проблемы в то время придали самое серьезное значение.
Первые попытки измерить скорость ПВ за фронтом детонационной волны были предприняты лабораторией, руководимой Евгением Константиновичем Завойским, затем В.А.Цукерманом и Л.В.Альтшулером. Отработанные методы измерения впоследствии предстояло применить на натурном заряде, чтобы экспериментально определить подлинные газодинамические характеристики заряда и оценить достаточность их значений для осуществления ядерного взрыва в плутониевом ядре. Для создания методики измерений, которую можно применить к натурным зарядам, предстояло разработать и схему измерений, и конструкции экспериментальных узлов, а также изучить возможности осциллографической техники.
Конструкции экспериментальных блоков разрабатывать пришлось мне самому, для чего распоряжением К.И.Щёлкина я был на некоторое время прикомандирован к конструкторам под непосредственное начало Владимира Федоровича Гречишникова. Здесь мне впервые пришлось ознакомиться с принципиальной схемой конструкции атомной бомбы, после чего более ясно представилась значимость работ лабораторий М.Я.Васильева и Л.В.Альтшулера и особая важность предстоящих работ, возложенных на мои плечи, тогда как помощников или коллег для подготовки к ним у меня пока не было. Признаться, мне везло на уникальных людей — специалистов высокого класса и в то же время весьма умелых воспитателей. Одним из них и был В.Ф.Гречишников. Своим остроумием, находчивостью, человечностью и знанием своего дела он быстро располагал к себе любого с ним работающего.

Самоубийство Стельмаховича

Поначалу я был бесконечно обрадован тем, что наша маленькая рабочая группа пополнилась бывалым специалистом-электронщиком. Но затем вдруг возникло сомнение: с какой стати Цукерман так запросто расстался с хорошим специалистом? С этим сомнением я обратился к Кириллу Ивановичу, на что он мне ответил, что В.А.Цукерман и Д.Е.Стельмахович не сошлись характерами, посему использование знаний и опыта Стельмаховича Цукерманом велось весьма неэффективно. У Цукермана специалист пропадает, а с переводом к нам он сможет эффективно содействовать ускорению решения наших проблем. Но вскоре выяснилось, что надежды Кирилла Ивановича были напрасными, а мои радости — преждевременными. Специалистом Д.Е.Стельмахович оказался никудышным, к работе относился без какого-либо энтузиазма и как человек оказался весьма неопрятным и неискренним.
Далее, как выяснилось, у него были какие-то осложнения во взаимоотношениях с режимной службой, ему не давали разрешения на выезд в Ленинград за семьей. Кончилось все тем, что однажды ночью к нему на квартиру пришли работники милиции с ордером для ареста и обыска. Поскольку я проживал с ним по соседству, на одной лестничной клетке, то был привлечен к этой процедуре в качестве понятого. Во время обыска, воспользовавшись тем, что милиционеры заинтересовались библиотекой, Стельмахович вбежал в спальню и выстрелил из ружья себе в грудь. Оказалось, что ружье стояло около кровати в заряженном состоянии. Милиционеры, не успев что-либо сообразить, увидели Стельмаховича уже мертвым. Эта трагическая история долгое время лихорадила весь коллектив научно-исследовательской лаборатории, а нашу группу парализовала основательно и надолго. Всех нас мучили догадки, что же могло побудить его на подобный шаг, зачем и за что его нужно было арестовывать и что искали при обыске?
Впоследствии удалось выяснить, что арестовывать его и не собирались, просто забыли вычеркнуть в ордере слово «арест», искали же у него револьвер «наган», который он брал в свое время для технологических целей в режимной службе, а затем был сдан мною обратно за ненадобностью. Но какое-то ведомство сработало не так, как надо. Обстоятельства случившегося наводили на мысль, что самоубийство им было заранее задумано, а неумные действия милиционеров и разгильдяя прокурора, давшего санкцию, ускорили развязку. Досужие умы эту историю истолковывают условиями работы и жизни, которые создавали у нас службы Берии. Однако так ли это?
Я всю жизнь проработал при Берии и после него в условиях строгого режима секретности, но никогда не ощущал тягот от бдения стражей режима, если сам строго следовал установленным нормам. К тому же в нашей работе постоянно складывались непредвиденные обстоятельства, и тогда со стороны режимной службы всякий раз оказывалась большая помощь.

Методы измерения скорости детонации

Сферический заряд ВВ — один из основных элементов атомной бомбы. Для получения наибольшей ядерной мощности следовало было бы применить в заряде самое мощное из всех известных в то время ВВ (например, гексоген). Но, к великому сожалению, осуществить это не представлялось возможным из-за повышенной чувствительности этих ВВ к механическим воздействиям, делающей невозможной изготовление из них крупных деталей. В конце концов, выбор пал на тротил (тринитротолуол), как самый технологичный и наиболее стойкий ко всякого рода воздействиям на него, материал. Но для усиления энергетических характеристик решено было применять его в смеси с гексогеном в соотношении 1:1 — ТГ 50/50 при незначительном повышении чувствительности. Хотя взрывчатые вещества тротил и гексоген имеют давнюю историю и характеристики их давно изучены, свойства их смесей не были известны, не было также никаких сведений о технологии изготовления крупногабаритных деталей из этих смесей с однородной плотностью по всей массе. Предстояло изучить, кроме химико-физических и эксплуатационных свойств, также зависимости скорости детонации от плотности и размера детали, соотношения компонентов в смеси, температуры. Газодинамические свойства любого ВВ характеризуются скоростью детонации и скоростью движения продуктов взрыва за фронтом детонационной волны.
Скорость детонации с давних времен измеряли методом Дотриша, очень простым в постановке, но весьма неудовлетворительном по точности. Хотя самыми точными современными способами измерения скорости детонации стали фотохронографический и контактно-осциллографический, в лаборатории А.Ф.Беляева основным был метод Дотриша, но для повышения точности значительно модернизированный В.М.Некруткиным, В.К.Боболевым и П.И.Роем. Смысл модернизации заключался в сравнении скоростей детонации исследуемого образца ВВ не с детонирующим шнуром, а с хорошо изученным ВВ, принятым за эталон, по величинам отклонений от середины отметок встречи детонационных волн на плите-отметчике. Благодаря простоте такой метод позволил оперативно вести большое количество экспериментов с вполне удовлетворительной точностью и не требовал дефицитного на то время приборного оснащения. Однако он подходил только для плоских детонационных волн;

Отработка сферического заряда

Пока проводились простые взрывные опыты с небольшими зарядами и плоской ударной волной, то, в основном, решались методические вопросы, отрабатывались электрические схемы, конструкции экспериментальных узлов, осваивалась измерительная аппаратура, которая (как отмечалось выше) изготавливалась в лабораториях своими силами. Работы, связанные с изучением ударной сжимаемости материалов (железа, алюминия, урана и др.), развернулись в особо больших масштабах с начала 1948 года.
К этому времени и был отработан модельный сферический заряд ВВ. К нему прямо на месте испытания приклеивалось мастиками множество фокусирующих элементов. Подрыв его осуществлялся электродетонаторами искрового действия, включенными в цепь подрыва последовательно. Хотя в полевых условиях подобные сборки отнимали много времени, они все-таки позволяли оперативно проводить экспериментальные работы, поскольку изготовление зарядов без помощи заводов позволяло значительно сэкономить время.
Сборка в полевых условиях требовала большой осторожности и внимания и была, пожалуй, самой опасной операцией всего эксперимента. При недостаточном контроле за температурой разогреваемой мастики иногда происходило загорание заряда, но, к счастью, все обходилось благополучно. По получаемым во взрывном опыте значениям скорости ударной волны и массовой скорости строились графические зависимости этих величин друг от друга. По ним определялись предельное сжатие и скорость звука в сжатом ударной волной металле.

Пока еще не был отработан натурный сферический заряд, проверку результатов расчета сжатия ядра и тем самым проверку правильности уравнения состояния материалов предполагалось провести на модельных сферических зарядах, размеры которых составляли 1/10 часть натуры, с помощью рентгеновской методики. Идея заключалась в том, чтобы путем просвечивания взрываемого сферического заряда рентгеновскими импульсами регистрировать изменение со временем размеров обжимаемого металлического ядра, фиксировать на пленку проекции ядра от начала до конца его сжатия и результаты экспериментальных исследований сравнить с расчетом. Таким образом можно по крайней мере качественно оценить картину сжатия и порядок величины средней плотности ядра, достигаемой при сжатии. Он также позволяет судить о сферичности сходящейся детонационной волны заряда.
Импульсная рентгеновская установка для того времени являлась выдающимся инженерным изобретением, позволяющим производить просвечивание с экспозицией около одной микросекунды от точечного источника рентгеновских лучей, что обеспечивало съемку предметов в динамике с хорошей резкостью изображения на пленке. Разработка конструкции импульсной рентгеновской установки, изготовление ее узлов, монтаж на рабочем месте, освоение и пользование методикой рентгеновского просвечивания — все осуществлялось силами и руками сотрудников лаборатории, которую возглавлял Вениамин Аронович Цукерман.

Капсюль-детонатор

В самом начале рассказа было отмечено, что в лабораторном корпусе, в одной из комнат работала лаборатория (В.А.Зуевский, Гаврилов), которую с конца 1947 года возглавлял Владимир Степанович Комельков. Задачей этой лаборатории являлась разработка системы подрыва заряда. Конструкцию КД для заряда со специальной розеткой, надежно прикреплямой к корпусу заряда, разрабатывал конструктор Михаил Иванович Пузырев. Разработкой технологии изготовления КД занималась лаборатория, руководимая Иваном Петровичем Суховым. В лаборатории Комелькова была разработана система подрыва 32 КД при параллельном подключении к генератору импульсов высокого напряжения, изготовлены опытные образцы системы для ее испытаний; КД с розетками были разработаны и изготовлены к концу 1948 года. Серия первых испытаний системы подрыва показала, что все выбранные конструктивные и схемные решения оказались удачными. А конструкция КД была настолько удачной, что она просуществовала в течение многих лет без каких-либо изменений, пока на смену ей не пришла конструкция безазидного КД с мостиковым запалом.

Отработка технологии сборки заряда с алюминиевым керном

Еще задолго до конца отработки элементов по заданию К.И.Щёлкина в отделе натурных испытаний на модели в 1/5 натуральной величины была начата отработка технологии сборки заряда с алюминиевым керном. На модели предстояло также отработать методику контроля симметрии детонационного фронта сферического заряда по форме обжатия керна при взрыве заряда. Предполагалось, что индикатором сферичности формы детонационного фронта в шаровом заряде (ШЗ) должна быть целостность и сферичность алюминиевого керна после его обжатия взрывом. Работы эти было поручено возглавить новому сотруднику отдела Сергею Николаевичу Матвееву, переведенному из НИИ-6 (Москва) и имеющему большой опыт ведения взрывных исследований.

Начальник отдела газодинамических исследований на натурном заряде Кирилл Иванович Щёлкин

Кирилл Иванович являлся образцом человека, ученого и администратора, достойного всемерного подражания. Все эти три стороны удачно сочетались в нем. Главная заслуга в том, что первая атомная бомба была разработана в короткий срок и на высоком техническом уровне, пожалуй, принадлежит ему. С момента моего первого знакомства с Кириллом Ивановичем в марте 1947 года в ПГУ на Ново-Рязанской улице в Москве, я на всю жизнь проникся величайшим уважением к этому человеку, поэтому не поделился с читателями своими впечатлениями о нем. В то время ему не было и 36 лет, по сегодняшним меркам — еще вроде бы молодой специалист, но он уже имел богатейший опыт экспериментальных исследований детонационных процессов в газах, результаты его исследований нашли практическое применение. И руководство страны не ошиблось, назначив его заместителем научного руководителя по решению атомной проблемы.
В первые полгода своего пребывания на объекте Кирилл Иванович регулярно встречался с нами по тематике лаборатории, но беседы были краткими. Основное его внимание было направлено на становление газодинамических лабораторий и конструкторской группы, определяющих темпы развития исследовательской базы по отработке шарового заряда. Постоянное взаимодействие с Кириллом Ивановичем по делам лаборатории в полной мере началось с конца 1947 года. С этого момента все проблемы по исследованию срабатывания шарового заряда на модели и натуре, по исследованию газодинамических параметров детонационных и ударных сферических сходящихся волн, по методике измерений и аппаратурным комплексам у нас в лаборатории обсуждались постоянно и самым подробным образом.
При обсуждениях, кроме организационных вопросов, рассматривались схемы и программы очередных экспериментов, а перед тем результаты предыдущих работ подвергались доскональному разбору. Подробно разбирались вопросы обеспечения экспериментов и намечались пути оперативного разрешения всех вставших проблем. Такой порядок не нарушался много лет. Кириллу Ивановичу были свойственны вера в возможности и способности коллектива, в осуществимость начатого дела, какие бы трудности не встречались на пути.

Он постоянно требовал при организации каждого эксперимента изучать обязательно только одно неизвестное, ибо в противном случае при получении отрицательного результата он окажется труднообъяснимым. Кирилл Иванович был приверженцем эксперимента. По его словам, какими бы ни были совершенными расчеты технических и физических процессов, их результаты нельзя принимать за истину, если они не подтверждены экспериментами. Кирилл Иванович придавал большое значение планированию работ и регулярной отчетности. Но план им никогда не считался догмой.

Таким был Кирилл Иванович Щёлкин, заместитель научного руководителя, начальник отдела газодинамических исследований на натурном заряде, под руководством и при непосредственном участии которого была отработана конструкция первой атомной бомбы.

Отработка шарового заряда, обеспечивающего идеально сферический фронт ударной волны в металлическом керне

... в середине 1948 года был проведен первый эксперимент с натурным зарядом, в который входили не до конца отработанные фокусирующие элементы. Инициирование осуществлялось от капсюлей-детонаторов с электрозапалом при их последовательном электрическом соединении. Конечно, результат такого натурного эксперимента повторил результаты модельного: алюминиевый керн был разрушен и превращен в бесформенную массу с явными отпечатками проекций фокусирующих элементов. Центральная часть керна, примерно одна треть его массы, была расплавлена и вытекла из разрушенного керна наружу. Следующий эксперимент с полым алюминиевым керном [дал] еще более неутешительные результаты: по остаткам бесформенной, расчлененной на отдельный куски массы керна ничего нельзя было сказать о работе заряда. В последующем подобного рода полые керны не применялись.
Все же первые эксперименты с натурными зарядами позволили отработать в совершенстве технологию сборки в цехе завода № 2. В конце 1948 года, когда были отработаны элементы и технология сборки заряда, был снова поставлен натурный эксперимент с использованием цельнометаллического керна. После взрыва заряда поверхность керна оставалась гладкой, на ней уже отсутствовали местные вмятины и разломы. Хотя форма его представляла собой сплющенный шар, все свидетельствовало о том, что заряд отработан хорошо, а несферичность фронта детонационной волны имеет другую причину. Повторение эксперимента в той же редакции дало тот же результат.
В чем дело? Какие силы разрушают керн? По идее, он должен остаться целым и не торить первоначальную сферическую форму. В ходе размышлений Кириллом Ивановичем было высказано соображение: не нарушилась ли сферическая форма керна из-за близости земли? И тут же предложил поднять заряд на постамент высотой примерно 1 м. Проведенный эксперимент с поднятым над уровнем земли зарядом дал обнадеживающий результат: керн хоть и был сплюснут, но не разрушился. Расплав из него не вытек. По состоянию наружной поверхности можно утверждать, что симметрия детонационного фронта заряда хорошая. После этого решено было помост поднять еще выше, и в следующем эксперименте центр заряда располагался на высоте 3,5 м. К всеобщему удовлетворению, после очередного эксперимента на месте взрыва мы увидели кругленький шарик.
Измерения показали, что керн сохранил сферическую форму, но его наружный диаметр увеличился на 20 % от первоначального размера. После остывания шарик был распилен на две части. Оказалось, что внутри него образовалась почти сферическая полость, на дне которой затвердел расправ внутренней части металла. Таким образом, фактически закончилась отработка шарового заряда, обеспечивающего идеально сферический фронт ударной волны в металлическом керне. Эти результаты были проведены на натурных зарядах

Итоги 1948 года

Итак, к концу 1948 года элементы заряда ВВ были доведены до кондиции, работоспособность их не вызывала сомнений. К этому времени были определены константы уравнений состояния (скорости звука, предельные сжатия и пр.) конструкционных материалов. Теоретиками были произведены расчеты эффективности сжатия плутония сферически сходящейся ударной волной. Результаты расчета нужно было проверить экспериментально на натурном заряде. Проведенные до этого проверки на модельных зарядах давали чисто качественные показатели, однако вряд ли их можно было полностью и безошибочно перенести на натуру. А ведь условия для протекания цепной реакции деления ядер плутониевого ядра определяются его плотностью, которую оно приобретает при ударном сжатии. Ее требовалось экспериментально найти. Все эти работы, начиная с проектирования экспериментальных блоков заряда, отработки электрических схем и методики и кончая измерениями на окончательно отработанном заряде, были выполнены автором этих строк в содружестве поначалу с радиоинженером И.К.Саккеусом, техником А.Н.Репьевым.

Требования Павла Михайловича Зернова к организации работ

Расспросив о результатах эксперимента и получив обстоятельный доклад о положительном исходе первой нашей такой работы (если иметь в виду только получение качественных записей), он произнес:
— Удивительно. Я ожидал, что у вас ничего не выйдет.
— Почему? — полюбопытствовал я.
— Потому, — отвечал он, — что весь опыт у вас проведен "на соплях", без продуманной организационной технологии.
И тут же спросил:
— Знаешь, сколько стоит твой опыт?
— Нет.
— То-то и оно, что нет. Поэтому и поставили вы его по принципу "тяп-ляп".
Меня, признаться, удивила такая оценка, казалось бы, вполне удачного первого опыта — вместо ожидаемой похвалы получил разнос. Но затем у нас пошел разговор уже в более спокойной обстановке, и я понял, что же вызвало разочарование директора. Вот его слова. Подключение кабельной линии к клеммной панели при помощи скруток, без пайки, с подвязочками и подпорочками, — разве такие электрические цепи могут быть надежды? В полевых условиях подобная система подключения может отказать из-за пустяка, никакой информации не будет получено, и опыт пройдет впустую. Отсутствие расписанной и отлаженной технологии по подготовке и производству опыта может в любой момент привести к невыполнению людьми одной из требуемых операций: один в спешке или из-за невнимательности забыл ее произвести, другой на него понадеялся, а у руководителя опыта не хватило внимания проследить за всем.
Для проведения натурных испытаний, во-первых, нужна четкая инструкция, в которой должны быть расписаны порядок выполнения всех операций, их непосредственные исполнители, а также порядок регистрации выполненных операций. Во-вторых, такие ручные операции, как открытие затворов фотоаппаратов, включение питания контактных устройств и др., должны быть автоматизированы и заблокированы таким образом, чтобы в случае невыполнения хотя бы одной из них подрыв заряда был бы невозможен. Подключение кабельных линий и измерительному устройству заряда должно осуществляться только с помощью штыревых разъемов, пайка которых производится в заводских или лабораторных условиях, а для надежного крепления большого количества кабельных линий необходимо предусмотреть специальное устройство — всякие подвязочки и подпорочки должны быть исключены.
Столь резкие замечания и категоричные указания по производству опытов сначала вызвали у меня недоумение: зачем все капитально готовить, коль система работает один раз — взрыв — и нет ничего. Все высказанные Павлом Михайловичем требования были приняты и в дальнейшем нами осуществлялись, но только как строгое приказание. Однако впоследствии пришлось убедиться, что за приказанием стоит мудрость опытного инженера и руководителя. Только благодаря тщательному выполнению каждого взрывного эксперимента, удалось во всех случаях избежать потери информации. Впоследствии я не раз благодарил судьбу за то, что она свела меня с таким умудренным жизнью человеком, как Павел Михайлович Зернов.

Срыв сроков изготовления заказов для первой атомной бомбы

Хотя решением правительства для ускоренного создания первой атомной бомбы к разработке технологических процессов, приспособлений и приборов, изготовлению узлов и деталей был подключен ряд заводов и КБ различных ведомств, ни один заказ для наших нужд толком не был выполнен. Лишь усилиями наших конструкторов, технологов и производственников все задачи, в большинстве своем не имевшие аналогов, были успешно выполнены в кратчайшие сроки.
Например, изготовление тонкостенных корпусов ШЗ, обработка на металлорежущих станках урана, изготовление тонкостенных сферических оболочек из различных материалов — ни один из этих заказов смежниками выполнен не был. Лишь такие умельцы, как В.В.Касютых, Ф.К.Якубов, П.Д.Панасюк, А.И.Новицкий, М.В.Белкин, В.О.Можайченко, с честью справились с уникальными заданиями. Ими были разработаны весьма оригинальные, пионерные технологии, позволившие снять множество вопросов, возникших при создании атомной бомбы.

Многократная отработка блока инициирования

Надежность и работоспособность системы решено было проверить путем ее многократного включения при постоянном контроле за состоянием каждого элемента в отдельности. Требования К.И.Щёлкина при этом сводились к тому, чтобы за время испытаний провести не менее миллиона циклов включений. И вот, после изготовления опытного образца узлов системы началась изнурительная двухнедельная работа в круглосуточном режиме по включению и контролю за работой всех элементов системы с регистрацией высокого напряжения на выходе выпрямителя-умножителя и фактов выдачи высоковольтных электрических импульсов на электроразрядники, имитирующие КД. Включения проводились как по двум каналам, так и с имитацией выхода из строя одного из каналов в пульте управления, кабельной линии, блоке реле, в системе электрического питания. И каждый раз в любых вариантах «неисправностей» блок инициирования работал безотказно по двум каналам, т. е. система дублирования и перекрещивания электрических связей свою роль выполняла отлично.
Испытания эти проходили в условиях, приближенных к натурным, за исключением того, что длина кабельных линий от лабораторного домика площадки № 3, откуда осуществлялось управление, до каземата, где размещались блоки реле и инициирования с контрольной аппаратурой, составляла примерно 1,5 км вместо 10 км, но их омическое сопротивление соответствовало длине 10 км. Так был осуществлен миллион включений системы подрыва. По результатам испытаний можно было сделать следующий основной вывод: разработанная система управления подрывом заряда обладает абсолютной надежностью. В таком виде ее передали в производство для изготовления боевого комплекса узлов. В заключение испытаний с помощью этой системы было произведено три подрыва натурных зарядов с алюминиевым керном на площадке № 3.

Подготовка к испытаниям РДС-1

Территория в радиусе 100 км вокруг выбранного центра испытательного поля, использовавшаяся лишь казахами-кочевниками для выпаса скота, не имела постоянных поселков, и после создания полигона была отчуждена. Для казахов-кочевников, примерно в 20 км от воинского городка вниз по течению Иртыша, был сооружен поселок из сборно-щитовых домиков вблизи древнего казахского поселения Акжары. Однако эти дома не соответствовали житейским традициям кочевников и просуществовали недолго — были порушены и сожжены.

Формировались железнодорожные эшелоны и "по зеленой улице" отправлялись по адресу: г. Семипалатинск, станция Жана-Семей. До 20 июля все необходимое для экспедиций оборудование было отправлено. В начале августа на 4 самолетах были отправлены узлы и детали самого шарового заряда. А еще раньше, тоже самолетами, отправили нашу аппаратуру автоматического управления подрывом заряда. Во-первых, вследствие задержки ее изготовления заводом № 1 и необходимости затем тщательной проверки ее работоспособности в лабораторных условиях, отправить ее эшелоном не представилось возможным. Во-вторых, отправить нежные, не обкатанные, узлы аппаратуры эшелоном мы опасались, поскольку ей предстояли тогда немалые ударно-транспортные перегрузки: от объекта до узловой станции Шатки Горьковской ж.д. (примерно 70 км) перевозка производилась по узкоколейке, а далее в Шатках все перегружалось в вагоны железной дороги с нормальной колеей.
В двадцатых числах июля 1949 года на наш аэродром были поданы два грузовых военных самолета ЛИ-2, в которые загрузили весь комплект аппаратуры автоматики подрыва заряда, контрольно-стендовую аппаратуру, рабочий инструмент, сопроводительную и эксплуатационную документацию. Сопровождала груз группа, которой предстояло работать с аппаратурой на полигоне, в состав сопровождения входила также вооруженная охрана. Старшим группы был назначен С.В.Борискин. Условия полета на самолетах с посадками в Казани, Свердловске и Омске для перевозимой аппаратуры были далеки от идеальных, с точки зрения ее создателей. Встряска при посадках и взлетах, вибрация от работающих двигателей и тряска самолета от воздушных потоков — все это заставило нас основательно поволноваться за целостность аппаратуры ...

Система управления подрывом заряда и управления аппаратурным комплексом, регистрирующим параметры ядерного взрыва

Весь комплекс испытаний авиабомбы с бортовой аппаратурой был практически закончен к июлю 1949 г., т. е. до проведения первого ядерного испытания. Имелась возможность сброса атомной бомбы с самолета и ядерного взрыва на полигоне. Однако огромный измерительный комплекс испытательного поля не был подготовлен к такой работе — не отработана синхронизация поля с подрывом бомбы в воздухе — и первое ядерное испытание мы были вынуждены провести с подрывом на башне, что привело к значительному радиоактивному заражению местности. Впервые испытание атомной бомбы (с зарядом РДС-3) со сбрасыванием ее с самолета-носителя было осуществлено спустя 2 года, 17 октября 1951 года.

В здании командного пункта 12П были установлены: пульт управления, комплект аккумуляторных батарей, зарядно-разрядный щит с выпрямителями, комплект шлейфных осциллографов для записи факта выдачи пусковых команд и получения обратного контроля, комплект магнитофонов — для записи команд руководителя испытаниями и ответов об исполнении этих команд операторами. Пульт управления подключался к аккумуляторному блоку питания, к кабельной линии управления, к записывающей контрольной аппаратуре и к автомату поля для синхронного включения аппаратуры подрыва с аппаратурой измерительного комплекса. Поначалу предполагалось синхронный запуск подрывного и измерительного комплексов осуществлять от автомата собственной разработки с гиревым приводом, но после тщательного взвешивания всех «за» и «против» было решено осуществить запуск от автомата поля — так именовалось устройство, предназначенное для управления всей аппаратурой, регистрирующей параметры ядерного взрыва.
Автомат поля был разработан, спроектирован и изготовлен в ИХФ АН СССР. Руководитель разработки — Георгий Львович Шнирман. Автоматическая выдача команд в различные моменты времени на включение большого количества регистрирующей аппаратуры, размещенной в сооружениях по всему опытному полю, производилось шаговым переключателями, которые в свою очередь, приводились в движение генератором импульсного тока, частота которого была стабилизирована камертоном. Эти же шаговые переключатели выдавали электрические сигналы на включение системы управления подрывом заряда. Пуск автомата осуществлялся вручную от кнопки, по сигналу единого времени.
Таким образом, в первых числах августа 1949 года объединенная система управления подрывом заряда и управления аппаратурным комплексом, регистрирующим параметры ядерного взрыва, была готова для использования по назначению.

Подготовка системы подрыва заряда

Несколько слов о том, как производились подготовка системы подрыва заряда и сам подрыв на площадке в 7 км от центра поля. После установки заряда с помощью автокрана и размещения на нем блока реле с аккумуляторами и блока инициирования весь вспомогательный персонал, группа контролеров и наблюдателей от руководства эвакуировались — кто на площадку «Н», кто на наблюдательный пункт. Все заключительные операции и собственно подрыв заряда предстояло выполнить только двоим: Г.П. Ломинскому и мне. Кабельные линии управления подрывом, заранее проложенные до землянки, проверялись на целостность цепей и сопротивление изоляции, подключались к соединительному щиту возле заряда и к пульту управления в землянке. Затем производился контрольный цикл проверки автоматики подрыва — ее включение с измерением напряжения на рабочих конденсаторах блока инициирования и регистрации факта выдачи высоковольтного электрического импульса на эквивалентную нагрузку по факту срабатывания индикатора. Во время проверки запуск системы управления подрывом осуществлялся из землянки Г.П.Ломинским, а контроль за работой системы — мною рядом с зарядом. Синхронность действий между нами обеспечивалась при помощи телефонной связи, установленной между землянкой и помостом. После такой трехкратной проверки система подрыва обесточивалась, и начиналось снаряжение КД заряда. Технология снаряжения стандартная, отработанная в многократных подобных экспериментах: Г.П.Ломинский вынимает из розетки закоротку, передает ее мне, я принимаю и передаю ему боевой КД, он вставляет его в освободившееся место в розетке. Закоротка вставляется в свободное место в таре. И так 32 раза.
Когда установлены в заряд все 32 боевых КД, в таре находится 32 закоротки, имеющие особые метки и красный цвет. Последней операцией является подключение блока фидеров через два высоковольтных штыревых разъема к блоку инициирования. Затем отход и укрытие в землянке. Хотя землянка была выполнена по всем правилам военно-инженерного искусства, надежного запора у входной двери не было предусмотрено, да и дверь ее была не металлическая, а деревянная, правда, сработанная добротно. После небольших раздумий мы решили забить дверь могучими гвоздями, полагая, что они могут выполнить роль надежного замка, обеспечивая для нас защиту от ударной волны.
Программный агрегат включения системы подрыва запускается нажатием рычага, по хронометру, с таким расчетом, чтобы момент взрыва приходился на 10–00 местного времени. На пульте управления при этом ведется контроль включения и правильности работы блока реле и блока инициирования. И вот первый подрыв. Узлы автоматики подрыва работают без отклонений от нормы ...

Ударной волной срывает гвоздевые запоры, дверь распахивается настежь, и мы оказываемся в густом облаке пыли. Однако целы. Выйдя из землянки, наблюдаем последствия взрыва: в эпицентре лежит алюминиевый шарик (керн), над ним поднялось огромное дымовое и полевое облако, а вокруг, в радиусе 20–30 м горит сухая степная трава. Первая наша задача — потушить пожар, что оказывается несложно. Пущенные в ход два огнетушителя успешно выполняют свою задачу, и пожар быстро ликвидируется. Более долгим было ожидание остывания алюминиевого шарика до нормальной температуры, так чтобы его можно было отвезти в лабораторию. А пока он остывал, руководители успели прибыть с наблюдательного пункта. Они рассматривают шарик, с удивлением ощущая исходящий от него жар. Шарик имел правильную сферическую форму, свидетельствующую о высоком качестве работы заряда. И так эта операция по подрыву заряда без ядерной начинки повторялась трижды.

Щёлкин — крестный отец РДС-1

Руководители испытаний, в составе которых был Берия со своим телохранителем — полковником, вооруженным до зубов (хотя трудно было представить, от кого он должен отстреливаться), выйдя из командного пункта, обнимались и целовались, поздравляя друг друга с успехом. В заключение торжественных процедур, Берия обратился к Курчатову с предложением, чтобы этому ядерному заряду, который так здорово сработал, дали название. Игорь Васильевич ответил, что название уже есть, и крестный отец — К.И.Щёлкин.

Название заряд получил РДС-1 по начальным буквам слов: "Россия делает сама". Берии «РДС» понравилось, и он заверил, что Хозяину тоже понравится. Название РДС для ядерного заряда понравилось не только Хозяину, но и военным, которым это оружие должно было быть передано.

После испытаний

К середине сентября 1949 года весь личный состав экспедиции вернулся на рабочие места. В узких кругах сослуживцев ее участники делились впечатлениями об увиденном и услышанном на полигоне, но разговоры шли также и о работе здесь на месте, в лабораториях. Все руководство нашего института находилось в Москве и не подавало о себе никаких вестей. В лабораториях установилось затишье, не было заметно того подъема, с которым жили на протяжении двух лет все, от лаборанта до научного руководителя. Никто не мог объяснить причины наступившего затишья: то ли вынужденная остановка после длительного галопа, чтобы перевести дух, то ли ожидание чего-то сверхъестественного. Все произошло как бы само собой. Люди чего-то ждали. Такое состояние продолжалось и до Октябрьских праздников, и после них.

Разработкой приборов ступеней предохранения

... первый вариант баллистического корпуса авиабомбы был разработан в СКБ-47 МСХМ (главный конструктор — Кулаков), однако его летные испытания с макетом заряда на Ногинском авиаполигоне в феврале 1948 года показали, что авиабомба неустойчива в падении. Вариант пришлось забраковать. Получилось так, что не специалисты по авиабомбам, а наши конструкторы Н.Г.Маслов, И.В.Богословский, Н.В.Колесников, М.Н.Трусов и др. создали лучший вариант, который и был запущен в серийное производство. При продувке в аэродинамической трубе ЦАГИ он показал хорошие аэродинамические характеристики, а полигонные испытания на Багеровском авиаполигоне (близ Керчи) в июле 1948 года подтвердили устойчивость бомбы на траектории. Изготовление баллистического корпуса осуществлялось заводом № 48 МСХМ, впоследствии перешедшим в ведение ПГУ. Электрическая схема системы автоматического управления подрывом заряда строилась на двухканальном принципе, который обеспечивает абсолютную надежность работы даже в случае какой-либо неисправности.
Для обеспечения высокой степени безопасности система содержит несколько ступеней предохранения, причем каждая ступень предохранения снимается приборами различных принципов действия. Так, одна из ступеней предохранения снимается лишь в том случае, когда бомба поднята на высоту более 7 км, на земле ее снять невозможно. Эту функцию выполняет бароприбор с электрической автоблокировкой. Следующая ступень предохранения снимается, когда самолет-носитель удаляется от бомбы после её сбрасывания на безопасное расстояние. Эту функцию выполняют бароприборы, ветряночные устройства, моторные реле времени (МРВ). Критические команды на подрыв КД заряда также защищены ступенью предохранения и подаются от бароприборов, радиодатчиков и контактных устройств при достижении определенной высоты над поверхностью земли или при ударе о землю.
Для обеспечения сбрасывания бомбы "на невзрыв" электрическая система имеет разрыв электрических целей, осуществляемый чекой. Если чека выдергивается при сбрасывании, то обеспечивается нормальное срабатывание заряда, если же бомба сбрасывается с чекой, то он срабатывает пассивно от самоликвидатора. Для проверки состояния системы автоматики и задания типа срабатывания (воздушный взрыв, наземный взрыв и невзрыв), а также уставки высоты срабатывания, электрическая схема имеет выход через главный штыревой разъем (ГШР) с помощью специального жгута на пульт управления к штурману самолета-носителя. Разработкой схем системы автоматического подрыва заряда, приборов ступеней предохранения, блоков инициирования, критических датчиков занимались наши ведущие конструкторы: В.С.Комельков, С.Г.Кочарянц, С.С.Чугунов, В.А.Зуевский, И.А.Братухин, В.К.Лилье, А.П.Павлов, И.М.Авилкин, С.А.Хромов и др.

Отработка автоматики подрыва

После успешных испытаний баллистического корпуса авиабомбы на устойчивость полета после сбрасывания с самолета-носителя, в которых с помощью кинотеодолита каждый раз фиксировалась траектория падения, повторяемость совпадения точек сброса и приземления, времени падения, величины амплитуд и перегрузок при нутации (колебания оси бомбы вокруг траектории), предстояло проведение обширного объема испытаний на работоспособность электрической схемы автоматики, приборов снятия ступеней предохранения и выдачи критических команд на подрыв на траектории. В этих испытаниях бортовыми регистраторами фиксировались моменты и высоты срабатывания приборов схемы подрыва. После падения авиабомбы регистраторы извлекались, их записи расшифровывались. Таким образом представлялась возможность достоверно судить о четкости и надежности работы всех узлов автоматики на траектории падения авиабомбы.
Главная задача автоматики подрыва заключается не только в выдаче команды на подрыв КД в заранее установленной точке траектории, но и в обеспечении абсолютной синхронности их срабатывания. Проверка синхронности срабатывания КД на траектории падения авиабомбы в летных испытаниях проверялось известным методом Дотриша с помощью плит-отметчиков, суть которого заключалась в следующем. На ложементах внутри баллистического корпуса авиабомбы на месте отсутствующего шарового заряда закрепляется круглая стальная плита. На шлифованную плоскость плиты приклеиваются брусочки ВВ одинаковой длины в количестве 31 штуки. Брусочки располагаются по плоскости плиты как спицы колеса, сходясь в одну точку. При срабатывании автоматики подрыва на траектории полета они инициируются — от устройства, предназначенного для инициирования шарового заряда, — общим капсюлем из точки схождения и каждый своим капсюлем с другой стороны. В точках столкновения детонационных волн в средних частях брусочков образуются локальные пики повышенного давления, оставляющие на плите отчетливые вмятины шириной и глубиной масштаба 1 мм. При синхронном срабатывании всех 32 КД вмятины располагаются по окружности точно на серединах брусочков.
После каждого сброса авиабомбы плита-отметчик извлекалась из обломков, которые доставали порой с глубины до 2 метров. Извлекался также и самописец с бумагой, на которой была зафиксирована информация о срабатывании приборов автоматики подрыва на траектории. Таким образом, после сброса извлекалась информация о траектории и времени падения бомбы, порядке работы приборов автоматики подрыва, синхронности срабатывания КД.